Respuesta :

The solution to the division of the given surd is: [tex]\mathbf{P =\dfrac{(6\sqrt{x}-x^2\sqrt{x}-3x\sqrt{x}+2x+2)(x-1) }{8x} }[/tex]

Division of Surds.

The division of surds follows a systemic approach whereby we divide the whole numbers separately and the root(s) are being divided by each other.

Given that:

[tex]\mathbf{P=(\frac{\sqrt{x} +2}{x-1}+\frac{\sqrt{x}\\ -2}{x-2\sqrt{x} +1} ) : \frac{4x}{(x-1)^{2} }}[/tex]

i.e.

[tex]\mathbf{=\dfrac{(\frac{\sqrt{x} +2}{x-1}+\frac{\sqrt{x}\\ -2}{x-2\sqrt{x} +1} )}{ \frac{4x}{(x-1)^{2} }} }[/tex]

Using the fraction rule:

[tex]\mathbf{\dfrac{a}{\dfrac{b}{c}}= \dfrac{a\times c}{b}}[/tex]

[tex]\mathbf{\implies \dfrac{(\frac{\sqrt{x} +2}{x-1}+\frac{\sqrt{x}\\ -2}{x-2\sqrt{x} +1} )(x-1)^{2}}{4x}} }[/tex]

By simplification, we have:

[tex]\mathbf{ =\dfrac{\dfrac{(6\sqrt{x}-x^2\sqrt{x}-3x\sqrt{x}+2x+2)(x-1) }{2} }{4x} }[/tex]

[tex]\mathbf{P =\dfrac{(6\sqrt{x}-x^2\sqrt{x}-3x\sqrt{x}+2x+2)(x-1) }{8x} }[/tex]

Learn more about evaluating the division of surds here:

https://brainly.in/question/27942899

#SPJ1