Respuesta :
The center of mass is mathematically given as
[tex]\bar{x}=\left(\frac{44 e-100}{25 e-40}\right)\end{aligned}[/tex]
What is the center of mass.?
Determine the center of mass in one dimension:
Represent the masses at the respective distances.
[tex]\begin{|c|c|} Masses \ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ Located at \\\rho=x^{3}+x \cdot e^{-x} & \ \ \ \ x \in(0,1)$ \\\end[/tex]
We calculate the total mass of the system.
[tex]\begin{aligned}m &=\int_{0}^{1} \rho \cdot d x \\& m =\int_{0}^{1}\left(x^{3}+x \cdot e^{-x}\right) \cdot d x \\&m =\left|\frac{x^{4}}{4}-(x+1) e^{-x}\right|_{0}^{1} \\&m =\left(\frac{5}{4}-\frac{2}{e}\right)\end{aligned}[/tex]
Step 03: Calculate the moment of the system.
[tex]\begin{aligned}M &=\int_{0}^{1}(\rho \cdot x) \cdot d x \\& M=\int_{0}^{1}\left(x^{4}+x^{2} \cdot e^{-x}\right) \cdot d x \\&M =\left|\frac{x^{5}}{5}-\left(x^{2}-2 x+2\right) \cdot e^{-x}\right|_{0}^{1} \\&M=\left(\frac{11}{5}-\frac{5}{e}\right)\end{aligned}[/tex]
we calculate the center of mass.
[tex]\begin{aligned}\bar{x} &=\left(\frac{M}{m}\right) \\& \bar{x}=\left\{\left(\frac{\left.11-\frac{5}{5}\right)}{\left(\frac{5}{4}-\frac{2}{e}\right)}\right\}\right.\\& \bar{x}=\left(\frac{11 e-25}{5 e}\right) \cdot\left(\frac{4 e}{5 e-8}\right) \\&\bar{x}=\left(\frac{44 e-100}{25 e-40}\right)\end{aligned}[/tex]
Read more about the center of mass.
https://brainly.com/question/27549055
#SPJ1