Respuesta :

Answer:

[tex]x=0,~x=\frac{2\pi }{3},\:x=\frac{4\pi }{3},~x=2\pi[/tex]

Step-by-step explanation:

The given equation:

[tex]\cos(x)=2\cos^2(x)-1[/tex]

Let [tex]\cos(x)[/tex] be [tex]y[/tex]:

[tex]y=2y^2-1[/tex]

Rewrite as:

[tex]2y^2-y-1=0[/tex]

After solving quadratic equation, the solutions are:

[tex]y=1~~~~y=-\frac{1}{2}[/tex]

Substitute back [tex]\cos(x)[/tex], it follows:

[tex]\cos(x)=1~~~~\cos(x)=-\frac12[/tex]

For the first equation, the solution is [tex]x=0[/tex] and [tex]x=2\pi[/tex].

For the second equation, general solution is:

[tex]x=\frac{2\pi }{3}+2\pi n,\:x=\frac{4\pi }{3}+2\pi n[/tex]

But for the given interval, we must substitute n=0 into the equations so that the values of x must be within interval. Therefore:

[tex]x=\frac{2\pi }{3},\:x=\frac{4\pi }{3}[/tex]

So, the answers are:

[tex]x=0,~x=\frac{2\pi }{3},\:x=\frac{4\pi }{3},~x=2\pi[/tex]