Respuesta :

The magnitude of the net electric field at the origin due to the given distribution of charge is E_net = 4kQ/πR².

Given:

A semi-circle distribution with radius 'r'

Charges '+Q' and '-Q'

Calculation of net electric field:

Step 1:

The electric field for a charge is given as:

E = (kλ/R) i + (kλ/R) j         - ( 1 )

where, k is Coulomb's force constant

            λ is charge density

            R is separation distance between the charges

            i & j are unit vectors for x-axis and y-axis respectively

Step 2:

The electric field due to charge +Q is given as:

E₁ = (kλ/R) i - (kλ/R) j      - ( 2 )  

The electric field due to charge -Q is given as:

E₂ = (kλ/R) i + (kλ/R) j     - ( 3 )

Step 3:

Thus, the net electric field will be given as:

E_net = E₁ + E₂

Applying values in above equation, we get:

E_net = (kλ/R) i -(kλ/R) j + (kλ/R) i + (kλ/R) j

          =( kλ/R) [ i - j + i + j ]

          = 2i (kλ/R)                                     -( 4 )

Step 4:

Now, we know that the linear charge density is given as:

λ = Charge/length

   = Q/(πR/2)

   = 2Q/πR

Applying the value in equation 4, we get:

E_net = 2i (k(2Q/πR)/R)

          = 4i (kQ/πR²)

          = 4kQ/πR²

Therefore, the net electric field due to the given charge distribution is of magnitude 4kQ/πR² directed along the positive x-axis.

Learn more about electric field here:

https://brainly.com/question/12757739

#SPJ4

Ver imagen ishikabhutani58