Respuesta :
Answer:
[tex]\dfrac{1}{2}x^2\ln x - \dfrac{1}{4}x^2+\text{C}[/tex]
Step-by-step explanation:
Fundamental Theorem of Calculus
[tex]\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))[/tex]
If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.
[tex]\boxed{\begin{minipage}{4 cm}\underline{Integrating $x^n$}\\\\$\displaystyle \int x^n\:\text{d}x=\dfrac{x^{n+1}}{n+1}+\text{C}$\end{minipage}}[/tex]
Increase the power by 1, then divide by the new power.
Given indefinite integral:
[tex]\displaystyle \int x \ln x \:\: \text{d}x[/tex]
To integrate the given integral, use Integration by Parts:
[tex]\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}[/tex]
[tex]\text{Let }u=\ln x \implies \dfrac{\text{d}u}{\text{d}x}=\dfrac{1}{x}[/tex]
[tex]\text{Let }\dfrac{\text{d}v}{\text{d}x}=x \implies v=\dfrac{1}{2}x^2[/tex]
Therefore:
[tex]\begin{aligned}\displaystyle \int u \dfrac{dv}{dx}\:dx & =uv-\int v\: \dfrac{du}{dx}\:dx\\\\\implies \displaystyle \int x \ln x\:\:\text{d}x & = \ln x \cdot \dfrac{1}{2}x^2-\int \dfrac{1}{2}x^2 \cdot \dfrac{1}{x}\:\:dx\\\\& = \dfrac{1}{2}x^2\ln x -\int \dfrac{1}{2}x\:\:dx\\\\& = \dfrac{1}{2}x^2\ln x - \dfrac{1}{4}x^2+\text{C}\end{aligned}[/tex]
Learn more about integration here:
https://brainly.com/question/27805589
https://brainly.com/question/27983581
https://brainly.com/question/27759474