Respuesta :

Answer:

[tex]\approx 4.39 \cdot 3^x[/tex]

Step-by-step explanation:

Recall a property:

[tex](c\cdot f(x))'=c\cdot f(x)'[/tex], where [tex]c[/tex] is a constant.

Apply the property to the task:

[tex](4\cdot 3^{x})'=4\cdot (3^x)'[/tex]

Recall a property of the derivative of an exponential function:

[tex](a^x)'=a^x \cdot \ln{a}[/tex]

Apply the property to the task:

[tex]4\cdot 3^x \cdot \ln 3[/tex]

Since [tex]\ln 3\approx 1.0986[/tex], it follows:

   [tex]4\cdot 3^x \cdot \ln 3 \approx 4\cdot 1.0986 \cdot \ln3[/tex]

Multiply the numbers.

The answer is about [tex]4.39\cdot 3^x[/tex].