Answer:
[tex]\approx 4.39 \cdot 3^x[/tex]
Step-by-step explanation:
Recall a property:
[tex](c\cdot f(x))'=c\cdot f(x)'[/tex], where [tex]c[/tex] is a constant.
Apply the property to the task:
[tex](4\cdot 3^{x})'=4\cdot (3^x)'[/tex]
Recall a property of the derivative of an exponential function:
[tex](a^x)'=a^x \cdot \ln{a}[/tex]
Apply the property to the task:
[tex]4\cdot 3^x \cdot \ln 3[/tex]
Since [tex]\ln 3\approx 1.0986[/tex], it follows:
[tex]4\cdot 3^x \cdot \ln 3 \approx 4\cdot 1.0986 \cdot \ln3[/tex]
Multiply the numbers.
The answer is about [tex]4.39\cdot 3^x[/tex].