The form of the partial fraction decomposition is [tex]\frac{At + B}{(t^2 + 4)} + \frac{Ct + D}{(t^2 + 2)} + \frac{Et + F}{(t^2 + 2)^2}[/tex]
The fraction is given as:
[tex]\frac{t^4 + t^2 + 1}{(t^2 + 4)(t^2 + 2)^2}[/tex]
To decompose the above, we make use of the following rule:
[tex]\frac{px^n + qx^m +....+ r}{(x^2 + a)(x^2 + b)^2} = \frac{Ax + B}{(x^2 + a)} + \frac{Cx + D}{(x^2 + b)} + \frac{Ex + F}{(x^2 + b)^2}[/tex]
So, we have:
[tex]\frac{t^4 + t^2 + 1}{(t^2 + 4)(t^2 + 2)^2} = \frac{At + B}{(t^2 + 4)} + \frac{Ct + D}{(t^2 + 2)} + \frac{Et + F}{(t^2 + 2)^2}[/tex]
Hence, the form of the partial fraction decomposition is [tex]\frac{At + B}{(t^2 + 4)} + \frac{Ct + D}{(t^2 + 2)} + \frac{Et + F}{(t^2 + 2)^2}[/tex]
Read more about partial fraction decomposition at:
https://brainly.com/question/2516522
#SPJ1