Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.[tex]\frac{t^4+t^2+1}{(t^2+4)(t^2+2)^2}[/tex]

Respuesta :

The form of the partial fraction decomposition is [tex]\frac{At + B}{(t^2 + 4)} + \frac{Ct + D}{(t^2 + 2)} + \frac{Et + F}{(t^2 + 2)^2}[/tex]

How to decompose the function?

The fraction is given as:

[tex]\frac{t^4 + t^2 + 1}{(t^2 + 4)(t^2 + 2)^2}[/tex]

To decompose the above, we make use of the following rule:

[tex]\frac{px^n + qx^m +....+ r}{(x^2 + a)(x^2 + b)^2} = \frac{Ax + B}{(x^2 + a)} + \frac{Cx + D}{(x^2 + b)} + \frac{Ex + F}{(x^2 + b)^2}[/tex]

So, we have:

[tex]\frac{t^4 + t^2 + 1}{(t^2 + 4)(t^2 + 2)^2} = \frac{At + B}{(t^2 + 4)} + \frac{Ct + D}{(t^2 + 2)} + \frac{Et + F}{(t^2 + 2)^2}[/tex]

Hence, the form of the partial fraction decomposition is [tex]\frac{At + B}{(t^2 + 4)} + \frac{Ct + D}{(t^2 + 2)} + \frac{Et + F}{(t^2 + 2)^2}[/tex]

Read more about partial fraction decomposition at:

https://brainly.com/question/2516522

#SPJ1