100 POINTS!!! In one area, the lowest angle of elevation of the sun in winter is 21° Find the distance x that a plant needing full sun can be placed from a fence that is 10.5 feet high. Round your answer to the tenths place when necessary.

To find the length of the missing side x, use Tan trigonometric formula
Tan: [tex]\frac{opposite}{Adjacent}[/tex]
Tan 21 = [tex]\frac{10.5}{x}[/tex]
Tan 21 × [tex]\frac{1}{10.5}[/tex] = [tex]\frac{10.5}{x}[/tex]×[tex]\frac{1}{10.5}[/tex]
[tex]\frac{10.5}{Tan 21}=x[/tex]
x=27.4
X= 27.4 ft
Hope it helps!
Answer:
x = 27.4 ft
Step-by-step explanation:
Here given:
So, use tan rule:
[tex]\sf tan(\theta) = \dfrac{opposite}{adjacent}[/tex]
insert values
[tex]\sf tan(21) = \dfrac{10.5}{x}[/tex]
make 'x' subject
[tex]\sf x= \dfrac{10.5}{tan(21) }[/tex]
calculate value
[tex]\sf x = 27.35343...[/tex]
rounded to nearest tenth
[tex]\sf x = 27.4 \ ft[/tex]