Answer:
[tex]5\sqrt{3}[/tex]
Step-by-step explanation:
I'm assuming you're asking for most simplified form?
Original Equation:
[tex]\sqrt{27} - \sqrt{12} + \sqrt{48}[/tex]
Rewrite sqrt(27) using the exponent property: [tex]\sqrt[n]{a} * \sqrt[n]{b} = \sqrt[n]{ab}[/tex]
[tex]\sqrt{9} * \sqrt{3} -\sqrt{12} + \sqrt{48}[/tex]
Simplify sqrt(9)
[tex]3\sqrt{3} -\sqrt{12} + \sqrt{48}[/tex]
Rewrite the radical sqrt(12)
[tex]3\sqrt{3} -\sqrt{4}\sqrt{3} + \sqrt{48}[/tex]
Simplify sqrt(2)
[tex]3 \sqrt{3} -2\sqrt{3} + \sqrt{48}[/tex]
Rewrite the radical sqrt(48)
[tex]3\sqrt{3} -2\sqrt{3} + \sqrt{16}\sqrt{3}[/tex]
Simplify the sqrt(16)
[tex]3\sqrt{3} -2\sqrt{3} + 4\sqrt{3}[/tex]
You can think of sqrt(3) as x, in which case you have 3x - 2x + 4x, so you just add the coefficients and leave the sqrt(3) alone.
Subtract 2 from 3
[tex]1\sqrt{3} + 4\sqrt{3}[/tex]
Add 1 and 4
[tex]5\sqrt{3}[/tex]