Respuesta :

Answer:

[tex]5\sqrt{3}[/tex]

Step-by-step explanation:

I'm assuming you're asking for most simplified form?

Original Equation:

[tex]\sqrt{27} - \sqrt{12} + \sqrt{48}[/tex]

Rewrite sqrt(27) using the exponent property: [tex]\sqrt[n]{a} * \sqrt[n]{b} = \sqrt[n]{ab}[/tex]

[tex]\sqrt{9} * \sqrt{3} -\sqrt{12} + \sqrt{48}[/tex]

Simplify sqrt(9)

[tex]3\sqrt{3} -\sqrt{12} + \sqrt{48}[/tex]

Rewrite the radical sqrt(12)

[tex]3\sqrt{3} -\sqrt{4}\sqrt{3} + \sqrt{48}[/tex]

Simplify sqrt(2)

[tex]3 \sqrt{3} -2\sqrt{3} + \sqrt{48}[/tex]

Rewrite the radical sqrt(48)

[tex]3\sqrt{3} -2\sqrt{3} + \sqrt{16}\sqrt{3}[/tex]

Simplify the sqrt(16)

[tex]3\sqrt{3} -2\sqrt{3} + 4\sqrt{3}[/tex]

You can think of sqrt(3) as x, in which case you have 3x - 2x + 4x, so you just add the coefficients and leave the sqrt(3) alone.

Subtract 2 from 3

[tex]1\sqrt{3} + 4\sqrt{3}[/tex]

Add 1 and 4

[tex]5\sqrt{3}[/tex]