The simplified expression of [tex]\frac{1}{a + 1} + \frac{1}{a - 1} - \frac{2a}{a^2 + 1} - \frac{4a}{a^4 + 1}[/tex] is [tex]\frac{8a}{a^8 - 1}[/tex]
The expression is given as:
[tex]\frac{1}{a + 1} + \frac{1}{a - 1} - \frac{2a}{a^2 + 1} - \frac{4a}{a^4 + 1}[/tex]
Add the first two terms
[tex]\frac{a - 1 + a + 1}{(a + 1)(a - 1)} - \frac{2a}{a^2 + 1} - \frac{4a}{a^4 + 1}[/tex]
Evaluate
[tex]\frac{2a}{a^2 - 1} - \frac{2a}{a^2 + 1} - \frac{4a}{a^4 + 1}[/tex]
Evaluate the first two terms
[tex]\frac{2a^3 + 2a - 2a^3 + 2a}{(a^2 - 1)(a^2 + 1)} - \frac{4a}{a^4 + 1}[/tex]
Evaluate
[tex]\frac{4a }{a^4 - 1} - \frac{4a}{a^4 + 1}[/tex]
Take the LCM
[tex]\frac{4a^5 + 4a - 4a^5 + 4a }{(a^4 - 1)(a^4 + 1)}[/tex]
Evaluate the like terms
[tex]\frac{8a}{a^8 - 1}[/tex]
Hence, the simplified expression is [tex]\frac{8a}{a^8 - 1}[/tex]
Read more about expressions at:
https://brainly.com/question/723406
#SPJ1