Respuesta :

It has been proven that the trigonometric Identity (1 - secA + tanA)/(1 + secA + TanA) is equal to; (secA + tanA - 1)/(secA + tanA + 1)

How to prove trigonometric Identities?

We want to prove that;

(1 - secA + tanA)/(1 + secA + TanA) = (secA + tanA - 1)/(secA + tanA + 1)

We know from trigonometric identities that;

(secA)² – (tanA)² = 1   ----(1)

Also, from algebra we know that;

a² - b² = (a + b)(a - b)

The numerator of LHS of the original given Identity is:

1 - sec A - tan A

Using equation 1, we can say that;

(secA)² – (tanA)² - (sec A + tan A)

⇒ (sec A + tan A)(sec A - tan A) - (sec A - tan A)

This can be factorized to get;

(sec A - tan A)(sec A + tan A - 1)

Similarly, the denominator can be expressed as;

(sec A - tan A)(sec A + tan A + 1)

Thus, combining the numerator and denominator together gives us:

[(sec A - tan A)(sec A + tan A - 1)]/[(sec A - tan A)(sec A + tan A + 1)]

⇒ (secA + tanA - 1)/(secA + tanA + 1)

That expression is equal to the Right hand side and as such the Trigonometric Identity is proved.

Read more about Trigonometric Identities at; https://brainly.com/question/22591162

#SPJ1