Respuesta :

The product is equal to:

[tex]\frac{18}{25}(cos(165) + i*sin(165))[/tex]

How to solve the product?

Remember that we can write a complex number in polar form as:

[tex]R*e^{i*a} = R*(cos(a) + i*sin(a))[/tex]

Then the given product:

[tex]\frac{6}{5}*(cos(120) + i*sin(120))*\frac{3}{5}*(cos(45) + i*sin(45))[/tex]

can be rewritten to:

[tex](\frac{6}{5}*e^{i*120})*(\frac{3}{5}*e^{i*45})[/tex]

Now is easier to solve the product:

[tex](\frac{6}{5}*e^{i*120})*(\frac{3}{5}*e^{i*45})\\\\= \frac{6}{5} *\frac{3}{5} *e^{i*(120 + 45)}\\\\= \frac{18}{25}*e^{i*165}\\\\= \frac{18}{25}(cos(165) + i*sin(165))[/tex]

If you want to learn more about complex numbers:

https://brainly.com/question/10662770

#SPJ1