A 5.0-kg object is moving with speed 2.0 m/s. A 1.25-kg object is moving with speed 4.0 m/s Both objects encounter the same constant braking force, and are brought to rest. Which object travels the greater distance before stopping

Respuesta :

Acceleration is constant, so we can use the following kinematic equation and Newton's second law.

[tex]{v_f}^2 - {v_i}^2 = 2a\Delta x \implies -{v_i}^2 = -2\dfrac{F}{m}\Delta x \implies {v_i}^2 = 2\dfrac{F}{m} \Delta x[/tex]

where [tex]v_i[/tex] and [tex]v_f[/tex] are initial/final velocities, [tex]a[/tex] is acceleration, [tex]\Delta x[/tex] is displacment, [tex]F[/tex] is force, and [tex]m[/tex] is mass. Since the objects are coming to rest, the acceleration opposes the direction of motion and is negative.

Solve for [tex]\Delta x[/tex].

[tex]\Delta x = -\dfrac{m {v_i}^2}{2F}[/tex]

Compute the displacements of both objects.

[tex]\Delta x_{5.0\text{-kg}} = -\dfrac{(5.0\,\mathrm{kg}) \left(2.0\frac{\rm m}{\rm s}\right)^2}{2F} = -\dfrac{10}F \dfrac{\rm m}{\rm N}[/tex]

[tex]\Delta x_{1.25\text{-kg}} = -\dfrac{(1.25\,\mathrm{kg}) \left(4.0\frac{\rm m}{\rm s}\right)^2}{2F} = -\dfrac{10}F \dfrac{\rm m}{\rm N}[/tex]

Then both objects are displaced by the same amount.

Answer:

They stop in the same distance

Explanation:

f friction is the same for both and must overcome the KE of each object to bring each to rest.

f friction * d   = 1/2 mv^2    for each object :

f * d1 = 1/2 m1 v1^2                      f * d2 = 1/2 m2 v2^2

       =  1/2 5 (2 )^2                               = 1/2 1.25 (4)^2

Object 1  KE = 10  j                       Object 2 KE =    10 j

 

f d1 / f d2   =    10 / 10      ( f is the same for both)

  d1 / d2 = 1                    so  d1 = d2    they stop in the same distance !