10.7 rad/s is the final angular velocity of the stick.
Given:
Mass of the stick = 4.42 kg
Length of the stick = 1.23m
Force of impulse (I) = 12.8 N s
The linear velocity of the stick, [tex]v=\frac{I}{m}[/tex]
[tex]v=\frac{12.8 N.s (\frac{1 kg m/s^2}{1 N}) }{4.42 kg}[/tex]
[tex]v[/tex] [tex]= 2.89 m/s[/tex]
Therefore, the final linear velocity of the stick is 2.89 m/s
∴[tex]w=\frac{12 Ir}{ml^{2} }[/tex]
[tex]w=\frac{12 ( 12.8 N.s ) ( 46.4 cm)}{(4.42 kg) (1.23 m)^2}[/tex]
[tex]w= \frac{12 (12.8 N.s) (46.4 cm) (\frac{10^-^2 m}{1 cm} )}{(4.42 kg) (1.23m)2}[/tex]
[tex]w=10.7 rad/s[/tex]
Therefore, 10.7 rad/s is the final angular velocity of the stick.
Learn more about linear velocity here:
https://brainly.com/question/15154527
#SPJ4