The Sample mean,Sample Variance, Standard deviation is mathematically given as
Generally, the equation for Sample mean is mathematically given as
[tex]x = \frac{1}{N}(\sum xifi )[/tex]
Where
[tex]\sum xifi=80+135+220+145+72+258[/tex]
[tex]\sum xifi=910[/tex]
Therefore
x=1/42 (910)
x=21.66
Sample Variance
[tex]\sigma = \frac{1}{N-1}(\sum xi^2fi-(\frac{1}{N}(\sum xifi^2 )) )[/tex]
Where
[tex]\sum xi^2fi=640+2025+4840+4205+2592+11094[/tex]
[tex]\sum xi^2fi=25396[/tex]
Therefore
[tex]\sigma = \frac{1}{41}(25396-(\frac{1}{42}(910^2 )) )[/tex]
[tex]\sigma=138.52[/tex]
Standard deviation.
[tex]\mu=\sqrt{\sigma^2}\\\\\mu=\sqrt{138.52}[/tex]
[tex]\mu=11.769[/tex]
In conclusion,
x=21.66
[tex]\sigma=138.52[/tex]
[tex]\mu=11.769[/tex]
Read more about Probabllity
https://brainly.com/question/11234923
#SPJ1