Respuesta :

Answer:

b.) 2

Explanation:

Given:

  • [tex]\sf - \sqrt[\sf 5]{\sf -32}[/tex]

rewrite knowing 2⁵ = 32, (-2)⁵  = -32

  • [tex]\sf -\left(\sqrt[5]{(-2)^5}\right)[/tex]

simplify, ⁿ√xⁿ = x

  • [tex]\sf -\left(-2}\right)[/tex]

distribute inside parenthesis

  • [tex]\sf 2[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf Apply \ the \ laws \ of \ exponents:\sqrt[n]{-a}=-\sqrt[n]{a}, if \ n \ is \ odd \end{gathered}$}[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf \sqrt[5]{-32}=-\sqrt[5]{32} \end{gathered}$}[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf \bf{=-\left(-\sqrt[5]{32}\right)} \end{gathered}$}[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf Decompose \ the \ number \ into \ prime \ factors: 32=2^{5}. \end{gathered}$}[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf \bf{=-\left(-\sqrt[5]{2^5}\right)} \end{gathered}$}[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf Apply \ the \ laws \ of \ exponents:\sqrt[n]{a^n}=a,\:\quad \:a\ge 0 \end{gathered}$}[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf \sqrt[5]{2^5}=2 \end{gathered}$}[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf Remove \ parentheses:\quad \:-\left(-2\right)=2 \end{gathered}$}[/tex]

[tex]\large\displaystyle\text{$\begin{gathered}\sf \bf{=2 \ \ \to \ \ \ Answer} \end{gathered}$}[/tex]

{ Pisces04 }