Respuesta :

Answer: [tex]230^{\circ[/tex]

Step-by-step explanation:

For convenience, I labeled some points as shown in the attached picture.

Also, I assume [tex]\overline{AB}[/tex] and [tex]\overline{BC}[/tex] are tangents to the circle.

  1. [tex]\overline{BO} \cong \overline{BO}[/tex] (reflexive property)
  2. [tex]\overline{AB} \cong \overline{BC}[/tex] (tangents drawn from a common external point are congruent)
  3. [tex]\angle BAO \cong \angle BCO[/tex] (right angles are congruent)

Therefore, we know [tex]\triangle ABO \cong \triangle CBO[/tex] by HL.

Thus, by CPCTC,

[tex]\angle AOB \cong \angle BOC \implies m\angle BOC=65^{\circ}\\\\\implies m\angle AOC=130^{\circ}[/tex]

This means the measure of minor arc AC is [tex]130^{\circ}[/tex], and thus [tex]b=360^{\circ}-130^{\circ}=\boxed{230^{\circ}}[/tex]

Ver imagen Medunno13