Respuesta :

Answer:

k = 1

Step-by-step explanation:

Discriminant

[tex]b^2-4ac\quad\textsf{when }\:ax^2+bx+c=0[/tex]

[tex]\textsf{when }\:b^2-4ac > 0 \implies \textsf{two real roots}[/tex]

[tex]\textsf{when }\:b^2-4ac=0 \implies \textsf{one real root}[/tex]

[tex]\textsf{when }\:b^2-4ac < 0 \implies \textsf{no real roots}[/tex]

As we need to determine the value of k that will give one solution, set the discriminant to zero.

Given equation:

[tex]y=kx^2-4x+4[/tex]

Therefore:

  • a = k
  • b = -4
  • c = 4

Substitute these values into the discriminant and solve for k:

[tex]\begin{aligned}b^2-4ac & = 0\\\implies (-4)^2-4(k)(4) & = 0\\16-16k & = 0\\16k & = 16\\\implies k & = 1\end{aligned}[/tex]