If cos(x) = Three-fourths and tan(x) < 0, what is cos(2x)?
Negative StartFraction 3 StartRoot 7 EndRoot Over 8 EndFraction
Negative StartFraction 1 Over 8 EndFraction
StartFraction 1 Over 8 EndFraction
StartFraction 3 StartRoot 7 EndRoot Over 8 EndFraction

Respuesta :

Step-by-step explanation:

The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−

8

15

How to determine the value of sin(2x)

The cosine ratio is given as:

\cos(x) = -\frac 14cos(x)=−

4

1

Calculate sine(x) using the following identity equation

\sin^2(x) + \cos^2(x) = 1sin

2

(x)+cos

2

(x)=1

So we have:

\sin^2(x) + (1/4)^2 = 1sin

2

(x)+(1/4)

2

=1

\sin^2(x) + 1/16= 1sin

2

(x)+1/16=1

Subtract 1/16 from both sides

\sin^2(x) = 15/16sin

2

(x)=15/16

Take the square root of both sides

\sin(x) = \pm \sqrt{15/16

Given that

tan(x) < 0

It means that:

sin(x) < 0

So, we have:

\sin(x) = -\sqrt{15/16

Simplify

\sin(x) = \sqrt{15}/4sin(x)=

15

/4

sin(2x) is then calculated as:

\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)

So, we have:

\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗

4

15

4

1

This gives

\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−

8

15

Answer:

It's  1/8

Step-by-step explanation:

Correct on Edg