Respuesta :

Combine the terms by multiplying into a single fraction.

[tex]\bf{\dfrac{5}{2}x-7=\dfrac{3}{4}x+14 }[/tex]

Find the common denominator.

[tex]\bf{\dfrac{5x}{2}-7=\dfrac{3}{4}x+14 }[/tex]

Combine fractions with the lowest common denominator.

[tex]\bf{\dfrac{5x(-7)}{2}=\dfrac{3}{4}x+14 }[/tex]

Multiply the numbers.

[tex]\bf{\dfrac{5x-14}{2}=\dfrac{3}{4}x+14 }[/tex]

Combine the multiplied terms into a single fraction

[tex]\bf{\dfrac{5x-14}{2}=\dfrac{3x}{4}+14 }[/tex]

Find the common denominator.

[tex]\bf{\dfrac{5x-14}{2}=\dfrac{3x}{4}+\dfrac{4\cdot14}{4} }[/tex]

Combine fractions with the lowest common denominator.

[tex]\bf{\dfrac{5x-14}{2}=\dfrac{3x+4\cdot14}{4} }[/tex]

Multiply the numbers.

[tex]\bf{\dfrac{5x-14}{2}=\dfrac{3x+56}{4} }[/tex]

Eliminate the denominators of the fractions.

[tex]\bf{4\cdot\dfrac{5x-14}{2}=4\cdot\dfrac{3x+56}{4} }[/tex]

Cancel the multiplied terms that are in the denominator.

[tex]\bf{2(5x-14)=3x+56}[/tex]

To distribute.

[tex]\bf{10x-28=3x+56 }[/tex]

Add 28 to both sides.

[tex]\bf{10x-28+28=3x+56+28 }[/tex]

Simplify

[tex]\bf{10x=3x+84 }[/tex]

Subtract 3x from both sides.

[tex]\bf{10x-3x=3x+84-3x }[/tex]

Simplify

[tex]\bf{7x=84 }[/tex]

Divide both sides by the same factor.

[tex]\bf{x=\dfrac{84}{7} }[/tex]

Simplify

[tex]\bf{x=12 \ \ \ === > \ \ \ Answer}[/tex]

Verification

Let x=12.

  1. [tex]\bf{\dfrac{5}{2}\times12-7=\dfrac{3}{4}\times12+14 }[/tex]
  2. [tex]\bf{\dfrac{5\times12}{2}-7=\dfrac{3}{4}\times12+14 }[/tex]
  3. [tex]\bf{\dfrac{60}{2}-7=\dfrac{3}{4}\times12+14 }[/tex]
  4. [tex]\bf{30-7=\dfrac{3}{4}\times12+14 }[/tex]
  5. [tex]\bf{30-7=\dfrac{3\times12}{4}+14 }[/tex]
  6. [tex]\bf{30-7=\dfrac{36}{4}+14 }[/tex]
  7. [tex]\bf{30-7=9+14 }[/tex]
  8. [tex]\bf{23=9+14 }[/tex]
  9. [tex]\bf{23=23}[/tex]

Checked ✅