Respuesta :
[tex]2 {x}^{2} + 8x = {x}^{2} - 16 \\ 2 {x}^{2} - {x}^{2} + 8x + 16 = 0 \\ {x}^{2} + 8x + 16 = 0 \\ (x + 4)(x + 4) = 0 \\ x + 4 = 0 \: \: \: \: \: \: \: or \: \ \: \: \: \: \: \:x + 4 = 0 \\ x = - 4[/tex]
Hope it helps
Given: [tex]2x^2+8x=x^2-16[/tex]
Find: The value of the unknown, x
Solution: The first step that we need to take is to subtract [tex]x^2[/tex] from both sides and then add 16 from both sides. After that we need to factor out the expression and then solve for x.
Subtract [tex]x^2[/tex] from both sides
- [tex]2x^2 - x^2+8x=x^2 - x^2-16[/tex]
- [tex]x^2+8x = -16[/tex]
Add 16 to both sides
- [tex]x^2+8x + 16 = -16 + 16[/tex]
- [tex]x^2+8x + 16 = 0[/tex]
Factor our the expression
- [tex]x^2+8x + 16 = 0[/tex]
- [tex](x + 4)^2 = 0[/tex]
Solve for x
- [tex]x + 4 = 0[/tex]
- [tex]x + 4 - 4 = 0 - 4[/tex]
- [tex]x = 0 - 4[/tex]
- [tex]x = - 4[/tex]
Now that we have fully expanded the expression and determine the value of the unknown we can say that the correct answer would be option A, x = -4.