Respuesta :

32.5
For the left triangle you do 5x4 divided by 2 and you get 10
For the middle you do 5x7 divided by 2 and you get 17.5
For the right triangle you do 5x2 divided by 2 and you get 5
Add those together and you have 32.5 which is the area

Answer:

area = 50 cm²

Step-by-step explanation:

To calculate area of the composite figure, divide it into simple shapes (triangles, rectangles, squares...), calculate the area of each shape and add them together.

We can divide the figure into the triangle in the left, rectangle in the middle and another triangle in the right.

Formulas

Area of triangle

[tex]A = \frac{1}{2}bh[/tex]

A ... area of triangle

b ... base

h ... height perpendicular to the base

Area of rectangle

[tex]A = length \times width[/tex]

A ... area of rectangle

Step 1: Calculate areas of simpler shapes.

Area of left triangle:

[tex]A = \frac{1}{2}bh[/tex]

[tex]A_{\text{left}\triangle} = \frac{1}{2} \times 5 \text{ cm} \times 4 \text{ cm}[/tex]

[tex]A_{\text{left}\triangle} = 10 \text{ cm}^2[/tex]

Area of rectangle:

[tex]A = length \times width[/tex]

[tex]A_{\text{rectangle}} = 7 \text{ cm} \times 5 \text{ cm}[/tex]

[tex]A_{\text{rectangle}} = 35 \text{ cm}^2[/tex]

Area of right triangle:

[tex]A = \frac{1}{2}bh[/tex]

[tex]A_{\text{right}\triangle} = \frac{1}{2} \times 2 \text{ cm} \times 5 \text{ cm}[/tex]

[tex]A_{\text{right}\triangle} =5 \text{ cm}^2[/tex]

Step 2: Add the areas together.

[tex]A = A_{\text{left}\triangle} + A_{\text{rectangle}} + A_{\text{right}\triangle}[/tex]

[tex]A = 10 \text{ cm}^2 + 35 \text{ cm}^2 + 5 \text{ cm}^2[/tex]

[tex]A = 50 \text{ cm}^2[/tex]