Respuesta :

Centre(-3,2)

diameter=6 units [0-(-6)=6units ]

radius=6/2=3

Equation of circle

[tex]\\ \rm\Rrightarrow (x-h)^2+(y-k)^2=r^2[/tex]

  • For centre(h,k) and radius r

So our equation

[tex]\\ \rm\Rrightarrow (x+3)^2+(y-2)^2=3^2[/tex]

[tex]\\ \rm\Rrightarrow (x+3)^2+(y-2)^2=9[/tex]

Answer:

[tex](x+3)^2+(y-2)^2=9[/tex]

Step-by-step explanation:

Equation of a circle

[tex](x-a)^2+(y-b)^2=r^2[/tex]

where:

  • (a, b) is the center
  • r is the radius

From inspection of the diagram, the center of the circle appears to be at point (-3, 2), although this is not very clear.  Therefore, a = -3  and  b = 2.

Substitute these values into the general form of the equation of a circle:

[tex]\implies (x-(-3))^2+(y-2)^2=r^2[/tex]

[tex]\implies (x+3)^2+(y-2)^2=r^2[/tex]

Again, from inspection of the diagram, the maximum vertical point of the circle appears to be at y = 5.  Therefore, to calculate the radius, subtract the y-value of the center point from the y-value of the maximum vertical point:

⇒ radius (r) = 5 - 2 = 3

Substitute the found value of r into the equation:

[tex]\implies (x+3)^2+(y-2)^2=3^2[/tex]

Therefore, the final equation of the given circle is:

[tex]\implies (x+3)^2+(y-2)^2=9[/tex]

Ver imagen semsee45