Respuesta :

The simplified form of the expression using the law of exponent is 5/a^9b^9

Exponential expression

Given the exponential expression as shown:

[tex]\frac{25a^{-5}b^{-8}}{5a^4b}[/tex]

According to product and quotient of exponents, multiplication will be addition and quotient will be difference.

[tex]\frac{25a^{-5}b^{-8}}{5a^4b}=\frac{25}{5}a^{-5-4}b^{-8-1}\\ \frac{25a^{-5}b^{-8}}{5a^4b}=5a^{-9}b^{-9}[/tex]

Write the result as fraction

[tex]\frac{25a^{-5}b^{-8}}{5a^4b}=\frac{5}{a^9b^9}[/tex]

Hence the simplified form of the expression using the law of exponent is 5/a^9b^9

Learn more on indices here: https://brainly.com/question/10339517

#SPJ1