Find the perimeter of WXYZ. Round to nearest tenth if necessary.

Answer: 23.1
Step-by-step explanation:
The coordinates of the vertices are W(-2, 4), X(3, 1), Y(4, -4), and Z(-1, -3).
Using the distance formula,
[tex]WX=\sqrt{(-2-3)^{2}+(4-1)^{2}}=\sqrt{34}\\\\XY=\sqrt{(3-4)^{2}+(1-(-4))^{2}}=\sqrt{26}\\\\YZ=\sqrt{(4-(-1))^{2}+(-4-(-3))^{2}}=\sqrt{26}\\\\WZ=\sqrt{(-2-(-1))^{2}+(4-(-3))^{2}}=\sqrt{50}[/tex]
So, the perimeter is [tex]\sqrt{34}+\sqrt{26}+\sqrt{26}+\sqrt{50} \approx \boxed{23.1}[/tex]