Respuesta :
Answer:
[tex]\frac{a+4\sqrt{ay}+4y }{a-4y}[/tex]
given:
[tex]\frac{\sqrt{a}+2\sqrt{y}}{\sqrt{a}-2\sqrt{y} }[/tex]
solve for:
Rationalized denominator
Step-by-step explanation:
1. Rationalize the denominator
[tex]\frac{\sqrt{a}+2\sqrt{y}}{\sqrt{a}-2\sqrt{y} } * \frac{2\sqrt{y} }{2\sqrt{y} }[/tex]
2. Simplify
[tex]\frac{2\sqrt{y}(\sqrt{a}+2\sqrt{y} ) }{2\sqrt{y}(\sqrt{a}-2\sqrt{y}) }[/tex]
[tex]\frac{a+4\sqrt{ay}+4y }{a-4y}[/tex]
Answer:
[tex]\frac{a+4\sqrt{ay}+y }{a-4y }[/tex]
Step-by-step explanation:
As far as I understand, it looks like this: [tex]\frac{\sqrt{a}+2\sqrt{y} }{\sqrt{a}-2\sqrt{y} }[/tex]
We know that:
- [tex](a - b)*(a + b) = a^{2} -b^{2}[/tex]
- we can always multiply by 1
- [tex]\frac{\sqrt{a}+2\sqrt{y} }{\sqrt{a} +2\sqrt{y} }=1[/tex]
- [tex](a+b)^2=a^2+2ab+b^2[/tex]
Therefore,
[tex]\frac{\sqrt{a}+2\sqrt{y} }{\sqrt{a}-2\sqrt{y} } *1 =\frac{\sqrt{a}+2\sqrt{y} }{\sqrt{a}-2\sqrt{y} } *\frac{\sqrt{a} +2\sqrt{y} }{\sqrt{a}+2\sqrt{y} } =\frac{(\sqrt{a}+2\sqrt{y})^2 }{(\sqrt{a})^2-(2\sqrt{y})^2 } =\frac{a+4\sqrt{ay}+y }{a-4y }[/tex]