Respuesta :

The value of the expression [tex]2\cos(t) + \tan^2(t)[/tex] is 4 and the exact value of [tex]\sin^{-1}(\sin(\frac{5\pi}{3}))[/tex] is [tex]\frac{5\pi}{3}[/tex]

How to determine the trigonometry expression?

The point on the unit circle is given as:

[tex]P = (\frac 12, \frac{\sqrt{3}}2)[/tex]

A point on a unit circle is represented as: (x,y), such that:

cos(t) = x and sin(t) = y.

This means that:

[tex]\cos(t) = \frac 12[/tex]

[tex]\sin(t) = \frac{\sqrt 3}{2}[/tex]

Calculate tan(t) using:

[tex]\tan(t) = \frac{\sin(t)}{\cos(t)}[/tex]

So, we have:

[tex]\tan(t) = \frac{\frac{\sqrt 3}{2}}{1/2}[/tex]

Evaluate

[tex]\tan(t) = \sqrt 3[/tex]

The expression is then calculated as:

[tex]2\cos(t) + \tan^2(t) = 2 * \frac12 + (\sqrt 3)^2[/tex]

Evaluate each term

[tex]2\cos(t) + \tan^2(t) = 1 + 3[/tex]

Evaluate the sum

[tex]2\cos(t) + \tan^2(t) = 4[/tex]

Hence, the value of the expression [tex]2\cos(t) + \tan^2(t)[/tex] is 4

How to solve the arcsin expression?

The expression is given as:

[tex]\sin^{-1}(\sin(\frac{5\pi}{3}))[/tex]

As a general rule, the arc sine of sine x is x.

This means that:

[tex]\sin^{-1}(\sin(\frac{5\pi}{3})) = \frac{5\pi}{3}[/tex]

Hence, the exact value of [tex]\sin^{-1}(\sin(\frac{5\pi}{3}))[/tex] is [tex]\frac{5\pi}{3}[/tex]

Read more about trigonometry expressions at:

https://brainly.com/question/8120556

#SPJ1