Use the image below to answer the following question. Find the value of sin x° and cos y°. What relationship do the ratios of sin x° and cos y° share?

Find Hypotenuse
[tex]\\ \rm\Rrightarrow sinx=\dfrac{Perpendicular}{Hypotenuse}[/tex]
[tex]\\ \rm\Rrightarrow sinx=\dfrac{6}{10}[/tex]
[tex]\\ \rm\Rrightarrow sinx=\dfrac{3}{5}[/tex]
And
[tex]\\ \rm\Rrightarrow cosy=\dfrac{Base}{Hypotenuse}[/tex]
[tex]\\ \rm\Rrightarrow cosy=\dfrac{6}{10}[/tex]
[tex]\\ \rm\Rrightarrow cosy=\dfrac{3}{5}[/tex]
Answer:
Trigonometric ratios
[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]
where:
To find sin x and cos y, we must first find the length of the hypotenuse (PO) of the given right triangle.
To do this, use Pythagoras' Theorem:
[tex]a^2+b^2=c^2 \quad \textsf{(where a and b are the legs, and c is the hypotenuse)}[/tex]
Given:
[tex]\implies 6^2+8^2=PO^2[/tex]
[tex]\implies PO^2=100[/tex]
[tex]\implies PO=\sqrt{100}[/tex]
[tex]\implies PO=10[/tex]
Using the found value of the hypotenuse and the trig ratios quoted above:
[tex]\implies \sf \sin(x)=\dfrac{6}{10}=\dfrac{3}{5}[/tex]
[tex]\implies \sf \cos(y)=\dfrac{6}{10}=\dfrac{3}{5}[/tex]
Therefore, [tex]\sf \sin(x)=\cos(y)[/tex]