Respuesta :

The derivative of the function is  [tex]\frac{3\left(6x+5\right)\left(3x^2+5x+1\right)^{\frac{1}{2}}}{2}[/tex].

What is Derivative?

The derivative is the instantaneous rate of change of a function with respect to one of its variables.

Given function:

y= (3x²+5x+1)[tex]^{3/2}[/tex]

Differentiating and applying chain rule

= 3/2 * (3x²+5x+1)[tex]^{1/2}[/tex] d/dx (3x²+5x+1)

= 3/2 * (3x²+5x+1)[tex]^{1/2}[/tex]  (6x+5)

= [tex]\frac{3\left(6x+5\right)\left(3x^2+5x+1\right)^{\frac{1}{2}}}{2}[/tex]

Hence, the value of derivative is  [tex]\frac{3\left(6x+5\right)\left(3x^2+5x+1\right)^{\frac{1}{2}}}{2}[/tex]

Learn more about derivative here:

brainly.com/question/124529

#SPJ1