Respuesta :

For a4+ 4b4 + 5a2b2 + 5b4, LCM is  45a^4b^4  and HCF is a^2b^2

For  a4+2a3b+a2b2-9b2, LCM is  8a^5b2  and HCF is a^2

How to find the LCM and HCF

LCM is the lowest common multiple

For a4+4b4 +(a2+b2)5b2

Expand the expression first

a4+ 4b4 + 5a2b2 + 5b4

a2   | a4+ 9b4+ 5a2b2  

a2   | a2 + 9b4 + 5b2  

b2   | 1 + 9b4 + 5b2

b2   | 1 + 9b2 + 5

5     | 1 + 9+ 1

9     | 1 + 1

To find the LCM, multiply all the factorials = a2 * a2 * b2 * b2 * 5 * 9 = 45 a4b4

HCF is known as the highest common factor

a2b2  | a4 + 9b4 + 5a2b2

     | a2 + 9b2 + 5

The HCF = a2b2  

For a4+2a3b+a2b2-9b2

Collect like terms

LCM

a2      | a4+ 2a3b+ a2b2- 9b2

a2      | a2 + 2ab + b2 - 9b2

2a      | 1 + 2ab - 8b2

b        | 1 + b- 4b2

4b      | 1 + 1 -4b

          | 1 + 1 -1

LCM = a2 * a2 * 2a* b * 4b = 8a^5b^2

The HCF

 a2      |a4+ 2a3b+ a2b2- 9b2

           | a2 + 2ab + b2 - 9b2

HCF = a^2

Therefore, the LCM and HCF of a4+4b4 +(a2+b2)5b2 is  45a^4b^4 and   a^2b^2 respectively and that of a4+2a3b+a2b2-9b2 is 8a^5b62 and a^2 respectively

Learn more about LCM and HCF here:

https://brainly.com/question/26431349

#SPJ1