Respuesta :

[tex]~~~~~~8^2 = 64\implies \boxed{\log_8 64 = 2}\\\\\\~~~~~~~e^{10} =22026\implies \boxed{\ln 22026 = 10}[/tex]

s1m1

Answer:

19. [tex]log__{8} 64 = 2[/tex] ;  20. ln 22020 = 10

Step-by-step explanation:

I think the question asks to change to log OR ln.

For problem number (19) log will work best.

For problem number (20) ln will work best.

19).

               8² = 64 is in the form

[tex]base^{exponent} = number[/tex]

we need to write it using log form

[tex]log__{base} number =[/tex]what exponent we raise the base to so will give us the number

          [tex]log__{8} 64 = 2[/tex]

20)

      [tex]e^{10} = 22020\\[/tex]

[tex]log__{e} 22020 = 10\\[/tex],

but log base e is ln so

ln 22020 = 10