Respuesta :
Let's solve ~
We can use section formula to find the mid - point of the given line segment as it divied the line segment into ratio of 1 : 1
Let the coordinates of mid - point be (x , y)
[tex]\qquad \sf \dashrightarrow \: x = \frac{mx_2 - nx_1}{m + n} [/tex]
[tex]\qquad \sf \dashrightarrow \: y= \frac{my_2 - ny_1}{m + n} [/tex]
here,
- [tex] \sf{x_1 = -2 }[/tex]
- [tex] \sf{y_1 = -2 } [/tex]
- [tex] \sf{x_2 = 4 } [/tex]
- [tex] \sf{y_2 = 6} [/tex]
The ratio is m : n ~ i.e equivalent to 1 : 1, meaning m = n = 1.
[tex]\qquad \sf \dashrightarrow \: x = \frac{4 - ( - 2)}{1 + 1} [/tex]
[tex]\qquad \sf \dashrightarrow \: x = \frac{4 + 2}{2} [/tex]
[tex]\qquad \sf \dashrightarrow \: x = \frac{6}{2} [/tex]
[tex]\qquad \sf \dashrightarrow \: x = 3 [/tex]
similarly ~
[tex]\qquad \sf \dashrightarrow \: y= \frac{6 - ( - 2)}{1 + 1} [/tex]
[tex]\qquad \sf \dashrightarrow \: y= \frac{6 + 2}{2} [/tex]
[tex]\qquad \sf \dashrightarrow \: y= \frac{8}{2} [/tex]
[tex]\qquad \sf \dashrightarrow \: y = 4[/tex]
So, the midpoint of the line segment has coordinates:
- (3 , 4)
Answer:
(1,2)
Step-by-step explanation:
(x,y) = ((x1+x2)/2 , (y1+y2)/2)
[substitute values given]
(x,y) = ((-2+4)/2 , (-2+6)/2)
[solve the equation]
(x,y) = (2/2 , 4/2)
[simplify the values]
(x,y) = (1 , 2)