Find the equation of the line tangent to……

Photo is attached to see full problem. Please help! Will give brainliest!!

Find the equation of the line tangent to Photo is attached to see full problem Please help Will give brainliest class=

Respuesta :

Answer:

[tex]y=\dfrac{3x}{2\sqrt 2}+\sqrt 2[/tex]

Step-by-step explanation:

[tex]\text{Given that,}\\\\y = f(x)= \sqrt{2x^2 +3x +2 }\\\\\text{Plug x = 0 in the equation,}\\\\y = \sqrt{2 \cdot 0^2 +3 \cdot 0 +2} =\sqrt{2}\\ \\\text{So, the coordinate is~} \left(0,\sqrt 2 \right).\\\\\text{Now,}\\\\\text{Slope} = f'(x)\\\\~~~~~~~~=\dfrac{1}{2\sqrt{2x^2 +3x +2 }} \cdot \left(4x+3+0\right)\\\\\\~~~~~~~=\dfrac{4x+3}{2\sqrt{2x^2 +3x +2}}\\\\\\[/tex]

       [tex]~~~~~=\dfrac{4\cdot 0 +3 }{2 \sqrt{ 2 \cdot 0^2 +3 \cdot 0 + 2}}~~~~~~~~~~~~~~;[\text{at x = 0}]\\\\\\~~~~~~=\dfrac{3}{2\sqrt 2}~~~~~~~~~~~~~~[/tex]

[tex]\text{Equation of tangent line,}\\\\~~~~~~~y-y_1 = f'(x) (x-x_1)\\\\\\\implies y - \sqrt 2 = \dfrac 3{2 \sqrt 2} \left(x - 0\right)\\\\\\\implies y = \dfrac{3x}{2\sqrt 2}+\sqrt 2\\[/tex]