Respuesta :

The value of the matrix X is [tex]X = \left[\begin{array}{cc}0.5&0\\1&-0.5\end{array}\right][/tex]

How to solve for matrix X?

The attached image represents the complete question

The given matrices are:

[tex]A = \left[\begin{array}{cc}5&-3\\4&-2\end{array}\right][/tex]

[tex]B = \left[\begin{array}{cc}-1&1\\0&2\end{array}\right][/tex]

[tex]C = \left[\begin{array}{cc}-1&2\\-2&2\end{array}\right][/tex]

The expression is given as:

A(X - B) = C

Expand

AX - BX = C

This gives

[tex]\left[\begin{array}{cc}5&-3\\4&-2\end{array}\right] * \left[\begin{array}{cc}a&b\\c&d\end{array}\right] - \left[\begin{array}{cc}-1&1\\0&2\end{array}\right] * \left[\begin{array}{cc}a&b\\c&d\end{array}\right] = \left[\begin{array}{cc}-1&2\\-2&2\end{array}\right][/tex]

Evaluate the products

[tex]\left[\begin{array}{cc}5a - 3c&5b -3d\\4a - 2c&4b -2d\end{array}\right] - \left[\begin{array}{cc}-a + c&-b + d\\2c&2d\end{array}\right] = \left[\begin{array}{cc}-1&2\\-2&2\end{array}\right][/tex]

Evaluate the difference

[tex]\left[\begin{array}{cc}6a - 4c&6b -4d\\4a - 4c&4b -4d\end{array}\right] = \left[\begin{array}{cc}-1&2\\-2&2\end{array}\right][/tex]

By comparing the positions, we have:

6a - 4c = -1

6b - 4d = 2

4a - 4c = -2

4b - 4d = 2

Rewrite as:

6a - 4c = -1 and 4a - 4c = -2

6b - 4d = 2 and 4b - 4d = 2

Using a graphing tool, we have:

a = 0.5, c = 1, b = 0, and d = -0.5

Hence, the matrix X is:

[tex]X = \left[\begin{array}{cc}0.5&0\\1&-0.5\end{array}\right][/tex]

Read more about matrices at:

https://brainly.com/question/11989522

#SPJ1

Ver imagen MrRoyal