Respuesta :
Answer: (2.67, 3.33)
Explanation:
For the function y = 1/2x + 2
- y-intercept = (0, 2)
- x-intercept = (-4, 0)
[tex]\hrulefill[/tex]
For the function 2y + 2x = 12
- y-intercept = (0, 6)
- x-intercept = (6, 0)
Draw lines through these coordinates to produce a straight linear graph.
Then see, where they intersect each other. Intersection point : (2.67, 3.33)

Answer:
[tex]\mathsf {(2.66, 3.33)}[/tex]
Step-by-step explanation:
[tex]\textsf {Given :}[/tex]
[tex]\mathsf {1) y = \frac{1}{2}x + 2}[/tex]
[tex]\mathsf {2) 2y + 2x = 12} \implies \mathsf {y + x = 6} \implies \mathsf {y = -x + 6}[/tex]
[tex]\mathsf{Solving :}[/tex]
[tex]\textsf {Equating the values of y from both equations :}[/tex]
[tex]\implies \mathsf {\frac{1}{2}x + 2 = -x + 6}[/tex]
[tex]\implies \mathsf {\frac{3}{2}x = 4}[/tex]
[tex]\implies \mathsf {3x = 8}[/tex]
[tex]\implies \mathsf {x = \frac{8}{3} \implies {x = 2.66...}}[/tex]
[tex]\textsf {Finding y :}[/tex]
[tex]\implies \mathsf {y = -\frac{8}{3} + 6}[/tex]
[tex]\implies \mathsf {y = \frac{18 - 8}{3}}[/tex]
[tex]\implies \mathsf {y = \frac{10}{3}} \implies \mathsf {y = 3.33...}[/tex]
[tex]\textsf {Graph of equations is attached below.}[/tex]
