Find sin(x/2), cos(x/2), and tan(x/2) from the given information.

The values of sin (x/2) = 4/√17, cos (x/2) = 1/√17 and tan (x/2) = 4.
Trigonometric ratios are the ratios of the length of sides of a triangle. These ratios in trigonometry relate the ratio of sides of a right triangle to the respective angle.
Here, cos x = -15/17 (given)
we know, cos x = 2cos²x/2 - 1
cos²(x/2) = (cos x + 1)/2
cos²(x/2) = (-15/17 + 1)/2
cos²(x/2) = 1/17
cos (x/2) = 1/√17
then, sin (x/2) = √(1- cos²(x/2))
sin (x/2) = √(1 - 1/17)
sin (x/2) = √16/17
sin (x/2) = 4/√17
and tan (x/2) = sin (x/2) / cos (x/2)
tan (x/2) = [tex]\frac{4/\sqrt{17} }{1/\sqrt{17} }[/tex]
tan (x/2) = 4
Thus, the values of sin (x/2) = 4/√17, cos (x/2) = 1/√17 and tan (x/2) = 4.
Learn more about Trigonometry from:
https://brainly.com/question/22698523
#SPJ1