Answer:
[tex]< -6;-2;0 >[/tex]
Step-by-step explanation:
Let's first remember that
- vector products are distributive;
- cross product is anti-simmetric (ie [tex]\vec a\times \vec b= -\vec b \times \vec a[/tex])
- a vector cross multiplied by itself gives the zero vector [tex]\vec a \times \vec a = \vec 0[/tex]
We can now solve the equation
[tex]\vec v \times (\vec u + \vec v) = (\vec v \times \vec u) + (\vec v \times \vec v) = - \vec u \times \vec v + \vec 0 = < -6; -2; 0 >[/tex]