Answers: sin(2∅) = 120/169, cos(2∅) = 119/169, tan(2∅) = 120/119
Trigonometric functions are used to establish the relationship between the sides and the angles of a right angle triangle.
Analysis:
If cos∅ = adjacent/hypotenuse = 12/13,
Then, opposite of the right angled triangle = [tex]\sqrt{13^{2} - 12^{2} }[/tex] = 5
sin∅ = 5/13, cos∅ = 12/13, tan∅ = 5/12
sin(2∅) = 2sin∅cos∅ = 2(5/13)(12/13) = 120/169
cos(2∅) = [tex]cos^{2}[/tex]∅ - [tex]sin^{2}[/tex]∅ = [tex](\frac{12}{13}) ^{2}[/tex] - [tex](\frac{5}{13} )^{2}[/tex] = 144/169 - 25/169 = 119/169
tan(2∅) = sin(2∅) / cos(2∅) = 120/169 ÷ 119/169 = 120/119
Learn more about trigonometric functions: brainly.com/question/24349828
#SPJ1