Respuesta :

Answer:

[tex]\angle C = 16.26^{\circ}[/tex]

Step-by-step explanation:

[tex]~~~~~~\cos \theta = \dfrac{\text{Base}}{\text{Hypotenuse}}\\\\\\\implies \cos \angle C = \dfrac{BC}{AC}\\\\\\\implies \angle C = \cos^{-1} \left(\dfrac{BC}{AC}\right)\\\\\\\implies \angle C=\cos^{-1} \left(\dfrac{24}{25}\right)\\\\\\\implies \angle C = 16.26^{\circ}[/tex]

Answer:

∠C = 16.26°

Step-by-step explanation:

Since the adjacent side and the hypotenuse are given, let's take the cosine value of ∠C.

============================================================

Given :

⇒ Adjacent side (CB) = 24 cm

⇒ Hypotenuse (CA) = 25 cm

==========================================================

Taking the cos value :

⇒ cos ∠C = CB/CA

⇒ cos ∠C = 24/25

⇒ ∠C = cos⁻¹ (0.96)

∠C = 16.26°