Respuesta :

Using the Pythagorean identity, the value of the cosine ratio is [tex]\cos(\theta_1) = \frac{84}{85}[/tex]

How to determine the cosine ratio?

The given parameter is:

[tex]\sin(\theta_1) = -\frac{13}{85}[/tex]

By the Pythagorean identity, we have:

[tex]\sin^2(\theta_1) + \cos^2(\theta_1) = 1[/tex]

So, we have:

[tex](-\frac{13}{85})^2 + \cos^2(\theta_1) = 1[/tex]

This gives

[tex]\cos^2(\theta_1) = 1 - (-\frac{13}{85})^2[/tex]

Evaluate

[tex]\cos^2(\theta_1) = 1 - \frac{169}{7225}[/tex]

Take LCM

[tex]\cos^2(\theta_1) = \frac{7225 -169}{7225}[/tex]

This gives

[tex]\cos^2(\theta_1) = \frac{7056}{7225}[/tex]

Take the square root of both sides

[tex]\cos(\theta_1) = \pm \frac{84}{85}[/tex]

Cosine is positive in the fourth quadrant.

So, we have:

[tex]\cos(\theta_1) = \frac{84}{85}[/tex]

Hence, the cosine value is [tex]\cos(\theta_1) = \frac{84}{85}[/tex]

Read more about Pythagorean identity at:

https://brainly.com/question/1969941

#SPJ1