Answer:
$ 142100
Step-by-step explanation:
Profit is the difference between the revenue and the cost
P(x) = R(x) - C(x)
= 820x - x² - (2300 + 60x)
= 820x - x² - 2300 - 60x
= -x² + 820x - 60x - 2300
P(x) = -x² + 760x - 2300
We can find the maximum profit of the company by finding the maximum of the parabolic function.
a = -1 ; b = 760 and c = -2300
[tex]\sf \boxed{P_{max} = c - \dfrac{b^2}{4a}}[/tex]
[tex]\sf = -2300 - \dfrac{760^{2}}{4*(-1)}[/tex]
[tex]\sf = -2300 +\dfrac{577600}{4}\\\\ = -2300 + 144400\\= 142100[/tex]
[tex]\sf \boxed{P_{max}= \$ 142100}[/tex]