Respuesta :
[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]
Let's evaluate ~
[tex]\qquad \sf \dashrightarrow \: 5(z + 4) + 5(2 - z)[/tex]
[tex]\qquad \sf \dashrightarrow \: (5 \cdot z) + (5\cdot4) + (5\cdot2) - (5\cdot z)[/tex]
[tex]\qquad \sf \dashrightarrow \: 5z + 20 + 10 - 5z[/tex]
[tex]\qquad \sf \dashrightarrow \: 5z - 5z+ 20 + 10[/tex]
[tex]\qquad \sf \dashrightarrow \: 30[/tex]
So, the equivalent expression is 30
Answer:
30
Step-by-step explanation:
Let us divide the whole expression by 5. Then we must multiply the whole expression by 5 to obtain the same value as before.
Thus, we get the following expression:
[tex]\implies\huge\text{[}\dfrac{5(z+4)+5(2-z)}{5}\huge\text{]} \times 5[/tex]
[tex]\implies\huge\text{[}\dfrac{(z+4)+(2-z)}{1}\huge\text{]} \times 5[/tex]
Now, open the inner-most parentheses as the expression inside the inner-most parentheses, cannot be simplified further.
[tex]\implies\huge\text{[}\dfrac{z+4+2-z}{1}\huge\text{]} \times 5[/tex]
It should be noted that any number being subtracted from the same number is equivalent to 0. Therefore, we get the following expression:
[tex]\implies\huge\text{[}\dfrac{4+2}{1}\huge\text{]} \times 5[/tex]
Simplify the expression inside the long brackets.
[tex]\implies\huge\text{[}\dfrac{6}{1}\huge\text{]} \times 5[/tex]
Now, we can open the long brackets and simplify the product of 6/1 and 5.
[tex]\implies\huge\text{[}\dfrac{6}{1}\huge\text{]} \times 5 = \dfrac{6 \times 5}{1} = \dfrac{30}{1} = 30[/tex]
Therefore, the simplified expression is 30.
Learn more about one-variable expressions: https://brainly.com/question/27721172