Respuesta :

  • x=2sint
  • y=3sint

#1

  • x²/2+y²/3
  • (2sint)²/2+(3sint)²/3
  • 4sin²t/2+9sim²t/3
  • 2sin²t+3sim²t
  • 5sin²t

False

#2

  • x²+y²
  • 4sin²t+9sin²t
  • 13sin²t

False

#3

  • 3x²+2y²
  • 3(4sin²t)+2(9sin²t)
  • 12sin²+18sin²t
  • 30sin²t

False

None of the above

Answer:

None of these

Step-by-step explanation:

To convert the parametric curve into Cartesian form,
rewrite the equation for [tex]x[/tex] to make [tex]\sin t[/tex] the subject:

[tex]x=2\sin t[/tex]

[tex]\implies \sin t=\dfrac{x}{2}[/tex]

Substitute this into the given equation for [tex]y[/tex]:

[tex]\begin{aligned}y & =3 \sin t\\\implies y & = 3 \left(\dfrac{x}{2}\right)\\y& = \dfrac{3}{2}x\end{aligned}[/tex]

Therefore, the Cartesian form of the parametric curve is:

[tex]y=\dfrac{3}{2}x[/tex]

Further Information

[tex]\dfrac{x^2}{2}+\dfrac{y^2}{3}=1 \quad \textsf{is the equation of a vertical ellipse}[/tex]

[tex]\textsf{with center (0, 0), co-vertex }\sf \sqrt{2}, \textsf{ and vertex }\sqrt{3}[/tex]

[tex]x^2+y^2=6 \quad \textsf{is the equation of a circle}[/tex]

[tex]\textsf{with center (0, 0) and radius }\sf \sqrt{6}[/tex]

[tex]3x^2+2y^2=1 \quad \textsf{is the equation of a vertical ellipse}[/tex]

[tex]\textsf{with center (0, 0), co-vertex }\sf \dfrac{\sqrt{3}}{3}, \textsf{ and vertex }\dfrac{\sqrt{2}}{2}[/tex]