77. the volume of a cube is increasing at a rate of [tex]10 \mathrm{~cm}^{3} / \mathrm{min}[/tex] . how fast is the surface area increasing when the length of an edge is [tex]30 \mathrm{~cm} ?[/tex]

Respuesta :

Answer:

[tex]\displaystyle \frac{4}{3}\text{cm}^2/\text{min}[/tex]

Step-by-step explanation:

Given

[tex]\displaystyle \frac{dV}{dt}=10\:\text{cm}^3/\text{min}\\ \\V=s^3\\\\SA=6s^2\\\\\frac{d(SA)}{dt}=?}\:;s=30\text{cm}[/tex]

Solution

(1) Find the rate of the cube's edge length with respect to time at s=30:

[tex]\displaystyle V=s^3\\\\\frac{dV}{dt}=3s^2\frac{ds}{dt}\\ \\10=3(30)^2\frac{ds}{dt}\\ \\10=3(900)\frac{ds}{dt}\\\\10=2700\frac{ds}{dt}\\\\\frac{10}{2700}=\frac{ds}{dt}\\\\\frac{ds}{dt}=\frac{1}{270}\text{cm}/\text{min}[/tex]

(2) Find the rate of the cube's surface area with respect to time at s=30:

[tex]\displaystyle SA=6s^2\\\\\frac{d(SA)}{dt}=12s\frac{ds}{dt}\\ \\\frac{d(SA)}{dt}=12(30)\biggr(\frac{1}{270}\biggr)\\\\\frac{d(SA)}{dt}=\frac{360}{270}\biggr\\\\\frac{d(SA)}{dt}=\frac{4}{3}\text{cm}^2/\text{min}[/tex]

Therefore, the surface area increases when the length of an edge is 30 cm at a rate of [tex]\displaystyle \frac{4}{3}\text{cm}^2/\text{min}[/tex].