Respuesta :
See
x is decreased by 3 .
and y is increased by 5
So translation is
- f(x)=(1/4)^x
Hence
- f(x)=(1/4)^x-3+5
So
x will go 3 units right
y will go 5units up
Graph attached

Answer:
Translations
For [tex]a > 0[/tex]
[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]
[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]
[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]
Parent function:
[tex]f(x)=\left(\dfrac{1}{4}\right)^x[/tex]
Translated 3 units to the right:
[tex]f(x-3)=\left(\dfrac{1}{4}\right)^{x-3}[/tex]
Translated 5 units up:
[tex]f(x-3)+5=\left(\dfrac{1}{4}\right)^{x-3}+5[/tex]
[tex]\implies g(x)=f(x-3)+5[/tex]
Therefore:
[tex]\textsf{g(x) is a translation of f(x) by }\left(\begin{array}{c}3\\5\\\end{array}\right)[/tex]