Respuesta :

See

x is decreased by 3 .

and y is increased by 5

So translation is

  • f(x)=(1/4)^x

Hence

  • f(x)=(1/4)^x-3+5

So

x will go 3 units right

y will go 5units up

Graph attached

Ver imagen Аноним

Answer:

Translations

For [tex]a > 0[/tex]

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

Parent function:

[tex]f(x)=\left(\dfrac{1}{4}\right)^x[/tex]

Translated 3 units to the right:

[tex]f(x-3)=\left(\dfrac{1}{4}\right)^{x-3}[/tex]

Translated 5 units up:

[tex]f(x-3)+5=\left(\dfrac{1}{4}\right)^{x-3}+5[/tex]

[tex]\implies g(x)=f(x-3)+5[/tex]

Therefore:

[tex]\textsf{g(x) is a translation of f(x) by }\left(\begin{array}{c}3\\5\\\end{array}\right)[/tex]