Respuesta :
Answer:
3 m
Step-by-step explanation:
[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} b h \quad\textsf{(where b is the area of the circular base and h is the height)}[/tex]
Given:
- volume = 10 m³
- Area of base = 10 m²
[tex]\implies \sf 10=\dfrac{1}{3} \cdot 10 \cdot h[/tex]
[tex]\implies \sf 10=\dfrac{10}{3}h[/tex]
[tex]\implies \sf 30=10h[/tex]
[tex]\implies \sf h=\dfrac{30}{10}=3[/tex]
Answer:
height: 3 meter
Explanation:
[tex]\sf volume : \frac{1}{3} \ x \ base \ area \ x \ height[/tex]
Here given:
- base area: 10 m²
- height: h
- volume: 10 m³
Solve:
[tex]\longrightarrow \sf 10 = \frac{1}{3} \ x \ 10 \ x \ h[/tex]
[tex]\longrightarrow \sf 10 = \frac{10}{3} \ x \ h[/tex]
[tex]\longrightarrow \sf \frac{10 \ x \ 3}{10} = h[/tex]
[tex]\longrightarrow \sf 3 = h[/tex]