Respuesta :

Answer:

3 m

Step-by-step explanation:

[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} b h \quad\textsf{(where b is the area of the circular base and h is the height)}[/tex]

Given:

  • volume = 10 m³
  • Area of base = 10 m²

[tex]\implies \sf 10=\dfrac{1}{3} \cdot 10 \cdot h[/tex]

[tex]\implies \sf 10=\dfrac{10}{3}h[/tex]

[tex]\implies \sf 30=10h[/tex]

[tex]\implies \sf h=\dfrac{30}{10}=3[/tex]

Answer:

height: 3 meter

Explanation:

[tex]\sf volume : \frac{1}{3} \ x \ base \ area \ x \ height[/tex]

Here given:

  • base area: 10 m²
  • height: h
  • volume: 10 m³

Solve:

[tex]\longrightarrow \sf 10 = \frac{1}{3} \ x \ 10 \ x \ h[/tex]

[tex]\longrightarrow \sf 10 = \frac{10}{3} \ x \ h[/tex]

[tex]\longrightarrow \sf \frac{10 \ x \ 3}{10} = h[/tex]

[tex]\longrightarrow \sf 3 = h[/tex]