Respuesta :

Answer:

1/15 or 0.0666.. repeating

Step-by-step explanation:

1. Group all a terms on the left side of the equation

Add a to both sides

[tex]46a+\frac{5}{3}+a=\frac{24}{5}-a+a[/tex]

Group like terms:

[tex]46a+a+\frac{5}{3}=\frac{24}{5}-a+a[/tex]

Simplify the arithmetic:

[tex]47a+\frac{5}{3}=\frac{24}{5}-a+a[/tex]

Group like terms:

[tex]47a+\frac{5}{3}=-a+a+\frac{24}{5}[/tex]

Simplify the arithmetic:

[tex]47a+\frac{5}{3}=\frac{24}{5}[/tex]

2. Group all constants on the right side of the equation

[tex]47a+\frac{5}{3}=\frac{24}{5}[/tex]

Subtract [tex]\frac{5}{3}[/tex] from both sides:

[tex]47a+\frac{5}{3}-\frac{5}{3}=\frac{24}{5}-\frac{5}{3}[/tex]

Combine the fractions:

[tex]47a+\frac{5-5}{3}=\frac{24}{5}-\frac{5}{3}[/tex]

Combine the numerators:

[tex]47a+\frac{0}{3}=\frac{24}{5}-\frac{5}{3}[/tex]

Reduce the zero numerator:

[tex]47a+0=\frac{24}{5}-\frac{5}{3}[/tex]

Simplify the arithmetic:

[tex]47a=\frac{24}{5}-\frac{5}{3}[/tex]

Find the lowest common denominator:

[tex]47a=\frac{24\cdot 3}{5\cdot 3}+\frac{-5\cdot 5}{3\cdot 5}[/tex]

Multiply the denominators:

[tex]47a=\frac{24\cdot 3}{15}+\frac{-5\cdot 5}{15}[/tex]

Multiply the numerators:

[tex]47a=\frac{72}{15}+\frac{-25}{15}[/tex]

Combine the fractions:

[tex]47a=\frac{72-25}{15}[/tex]

Combine the numerators:

[tex]47a=\frac{47}{15}[/tex]

3. Isolate the a

[tex]47a=\frac{47}{15}[/tex]

Divide both sides by 47:

[tex]\frac{47a}{47}=\frac{\frac{47}{15}}{47}[/tex]

Simplify the division:

[tex]a=\frac{47}{15\cdot 47}[/tex]

Simplify the right side:

[tex]a=\frac{1}{15}[/tex]

hope this helps:)

Answer:

0.06 or 1/15

Step-by-step explanation:

Isolate the variable by dividing each side by factors that don't contain the variable.