Respuesta :

Answer:

[tex]\sf x = 6\dfrac{2}{3} \ \ or \ \ 6.67 \ (rounded \ to \ nearest \ hundreth)[/tex]

Build a proportional equation:

[tex]\rightarrow \sf \dfrac{AB}{AD} = \dfrac{BC}{DE}[/tex]

[tex]\rightarrow \sf \dfrac{10}{x+10} = \dfrac{6}{10}[/tex]

[tex]\rightarrow \sf 10(10) = 6(x+10)[/tex]

[tex]\rightarrow \sf 100 = 6x+60[/tex]

[tex]\rightarrow \sf 40= 6x[/tex]

[tex]\rightarrow \sf x = 40/6[/tex]

[tex]\rightarrow \sf x = \dfrac{20}{3}[/tex]

[tex]\rightarrow \sf x = 6\dfrac{2}{3}[/tex]

Answer:

Step-by-step explanation:

1. Create a porportianal equation. ab/ad=bc/de

2. plug in the variables for each line segment. 10/x+10=6/10

3. multiply each side by x + 10.      (6x+60)/10=10

4. Multiply each side by 10.    6x+60=100

5. simplify.    6x=40       3x=20

6. divide each side by 3.    x=20/3

(Sorry about my last answer)