Answer:
true
Step-by-step explanation:
Examples :
180 = 5 × 2² × 3²
Then
The number 180 has perfect square factors which are 2 and 3
Then
The number √180 can be simplified because:
[tex]\sqrt{180} =\sqrt{5\times 2^{2}\times 3^{2}}[/tex]
[tex]=\sqrt{5\times \left( 2\times 3\right)^{2} }[/tex]
[tex]=\sqrt{5\times \left( 6\right)^{2} }[/tex]
[tex]=\sqrt{5} \times \sqrt{6^{2}}[/tex]
[tex]=6\sqrt{5}[/tex]
On the other hand :
10 = 5 × 2
Then
The number 10 has no perfect square factors
Then
The number √10 cannot be simplified because:
[tex]\sqrt{10} =\sqrt{5\times 2} =\sqrt{5} \times \sqrt{2}[/tex]
[tex]\text{and} \ \sqrt{5} \times \sqrt{2} \ \text{is not a simplified expression of} \ \sqrt{10} \ \\\text{,in fact it is more complicated than} \ \sqrt{10}[/tex]