Respuesta :

Answer:

[tex]x \approx 9.823\ ft[/tex]

Step-by-step explanation:

Remember that the area of a sector is defined as:

[tex]A = \frac{\theta}{360^\circ}\times \pi r^2[/tex]

In this problem, we are given the area [tex]A[/tex], and the angle [tex]\theta[/tex]. We can set up an equation to solve for the radius, which is x:

[tex]A = \frac{\theta}{360^\circ}\times \pi r^2\\128 = \frac{152}{360}\times \pi r^2\\128 \times \frac{360}{152} = \pi r^2\\\frac{5760}{19} = \pi r^2\\r = \sqrt{\frac{5760}{19 \pi}}\\r \approx 9.823[/tex]

Answer:

r ≈ 9.8 feet

Step-by-step explanation:

Formula of A Sector

  • Area (Sector) = πr² × θ/360°

Substitute the given values in the formula to find r.

  • 128 = 3.14 × r² × 152/360
  • 40.76 = r² × 19/45
  • r² = 1834.2/19
  • r² = 96.54
  • r ≈ 9.8 feet